Formulas of electrotechnic and electronic

Cross-section for single wire round
$\mathrm{q}=\frac{D^{2} \cdot \pi}{4}$ or $D^{2} \cdot 0,7854$
Cross-section for bunched wire
$\mathrm{a}=\frac{\mathrm{d}^{2} \cdot \pi}{4} \cdot n$ or $\mathrm{d}^{2} \cdot 0,7854 \cdot n$
Diameter for
single wires cross-section
$D=\sqrt{\frac{q \cdot 4}{\pi}}$ or $\sqrt{q \cdot 1,2732}$
Diameter for bunched wires
$D=\sqrt{1,34 \cdot n} \cdot d$
q = cross-section(mm²)
D = conductor diameter (mm)
d = single wire diameter (mm)
$\mathrm{n}=$ number of wires

Conductor R	$=\frac{1}{\kappa \cdot q} \text { oder } \frac{\rho \cdot 1}{q}$	
$\mathrm{R}_{\text {schleife }}$	$\begin{aligned} & =\frac{2 \cdot 1}{\kappa \cdot \alpha} \text { oder } \frac{2 \cdot 1 \mathrm{p}}{\mathrm{q}} \\ & =\text { Electrical direct-current resistant (Ohm) } \\ & =\text { Resistance of a complete circuit } \\ & =\text { cross-section }\left(\mathrm{mm}^{2} \text { or } \mathrm{q}\right. \text { mm) } \\ & =\text { Conductivity } \\ & =\text { Specific resistance }\left(\rho=\frac{1}{\kappa}\right) \\ & =\text { Conductor length }(\mathrm{m}) \end{aligned}$	
$\begin{aligned} & R \\ & R \\ & \text { schleife } \\ & \text { q } \\ & \text { к (Kappa) } \\ & \rho(R h o) \\ & 1 \end{aligned}$		
Materials	$\begin{aligned} & \text { Conductivity } \\ & \begin{array}{l} \mathrm{m} \\ \Omega \cdot \mathrm{~m}^{2} \end{array} \end{aligned}$	$\begin{aligned} & \text { Spec. resistance } \\ & \frac{\Omega \cdot \mathrm{mm}^{2}}{\mathrm{~m}} \end{aligned}$
Copper	58,00	0,01724
Aluminium	33,00	0,0303
Silver	62,00	0,1613
Iron	7,70	0,1299
Constantan	2,00	0,50

Serial connection

Resistance: $\quad R=R_{1}+R_{2}+R_{3}+\ldots+R_{n}$
Capacitance: $\quad \frac{1}{\mathrm{C}}+\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\ldots+\frac{1}{\mathrm{C}_{n}}$
Inductance: $\quad L=L_{1}+L_{2}+L_{3}+\ldots+L_{n}$

Parallel connection

Resistance:

$$
R=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots \frac{1}{R_{n}}
$$

Capacitance:

$$
C=C_{1}+C_{2}+C_{3}+\ldots C_{n}
$$

Inductance:

$$
L=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\ldots \frac{1}{L_{n}}
$$

Equivalent resistance of 2 parallel connected resistance
$R=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}$
Mutual capacity (C)

- coaxial cable
$C=\frac{\xi r \cdot 10^{3}}{18 \cdot \ln \frac{\mathrm{Da}}{\mathrm{d}}}(\mathrm{nF} / \mathrm{km})$
- parallel core

$$
=\frac{\xi r \cdot 10^{3}}{36 \cdot \ln D}
$$

(nF/km)

- shielded twisted pair
$C_{B}=\frac{\xi r \cdot 10^{3}}{36 \ln \frac{2 a}{d} \cdot \frac{\left(\mathrm{Da}^{2}-\mathrm{a}^{2}\right)}{\left(\mathrm{Da}^{2}-\mathrm{a}^{2}\right)}}(\mathrm{nF} / \mathrm{km})$
$\mathrm{Da}=$ Outer diameter over insulation
Ds = diameter over shield
$\mathrm{d}=$ diameter of conductor
$\mathrm{a}=$ distance - mid to mid of both conductors
$\xi=$ dielectric constant

Ohm's Law
The current intensity (I) is proportional to voltage (U) and inversely proportional to resistance (R)
$I=\frac{U}{R} \quad R=\frac{U}{I}$
$U=I \cdot R$

I = current intensity (Amps - A)
$R=$ electrical resistance (Ω)
$\mathrm{U}=$ electrical voltage (V)

Conductance

S (Siemens) = reziprocal value of a resistance
is used as conductance
1 Siemens = 1/Ohm
$G=$ electrical conductance

Capacitance

- Single core against earth
$C_{B}=\frac{\xi r \cdot 10^{3}}{18 \ln \frac{\mathrm{Di}}{\mathrm{d}}}(\mathrm{nF} / \mathrm{km}$ or $\mathrm{pF} / \mathrm{m})$
- Unshielded symmetrical twisted pair
$C_{B}=\frac{\xi r \cdot 10^{3}}{36 \ln \frac{2 a}{d}}$ (nF/km or pF/m)
- Coaxial pair
$C_{B}=\frac{\xi r \cdot 10^{3}}{18 \ln \frac{D i}{d}}(\mathrm{nF} / \mathrm{km}$ or $\mathrm{pF} / \mathrm{m})$
- Shielded symmetrical twistet pair
$C_{B}=\frac{\xi r \cdot 10^{3}}{36 \ln \frac{2 a}{d} \cdot \frac{\left(D a^{2}-a^{2}\right)}{\left(D a^{2}-a^{2}\right)}}(n F / k m$ or $\mathrm{pF} / \mathrm{m})$
$D i=$ outer diameter over single core (mm)
$\mathrm{Da}=$ outer diameter of multicores (mm)
$d=$ conductor diamete (mm)
a = distance between two conductors mid to mid of both conductors

Inductance of parallel cores

at low frequencies
$L=0,4\left(\ln \frac{\mathrm{Da}}{\mathrm{r}}+0,25\right) \mathrm{mH} / \mathrm{km}$
at high frequencies
$L=0,4\left(\mathrm{In} \frac{\mathrm{Da}}{\mathrm{r}}+0\right) \mathrm{mH} / \mathrm{km}$

Inductance of coaxial cable

at high frequencies
$\mathrm{L}=0,2\left(\mathrm{ln} \frac{\mathrm{Da}}{\mathrm{r}}+0\right) \mathrm{mH} / \mathrm{km}$
$\mathrm{Da}=$ distance between two conductors mid to mid of both conductors
$r=$ radius of a conductor
छr = dielectric constant

Impedance (z)

for coaxial cable $\quad Z=\frac{60}{\sqrt{\xi r}} \cdot \ln \frac{D}{d}(\Omega)$
D = diameter over insulation
d = conductor diameter
for communication cable
at low frequencies
$Z=\sqrt{\frac{R}{\omega C}}(\Omega) \cdot \tan \varphi=1, \quad \varphi=45^{\circ}$
at high frequencies
$Z=\sqrt{\frac{L}{C}}(\Omega)$
$\mathrm{R}=$ Resistance (Ω / km)
$\mathrm{L}=$ Inductance (mH/km)
$\mathrm{C}=$ Capacitance ($\mathrm{nF} / \mathrm{km}$)
$\omega=2 \pi f$
Wave length $\lambda=\frac{v}{f}$
$\lambda=$ wave length
$V=$ propagation velocity
(velocity of light: $300000 \mathrm{~km} / \mathrm{s}$)
$f=$ frequency
units of attenuation - Neper (N), decibel (dB) and Bel (B)
$1 \mathrm{~Np}=8,686 \mathrm{~dB}$
$1 \mathrm{~dB}=0,1151 \mathrm{~Np}=\frac{1}{10} \mathrm{Bel}$
$1 \mathrm{Bel}=10 \mathrm{~dB}=1,1513 \mathrm{~Np}$

