Formulas of electrotechnic and electronic

Cross-section for single wire round

$$q = \frac{D^2 \cdot \pi}{4} \text{ or } D^2 \cdot 0,7854$$

Cross-section for bunched wire

$$q = \frac{d^2 \cdot \pi}{4} \cdot n \text{ or } d^2 \cdot 0,7854 \cdot n$$

Diameter for

single wires cross-section

$$D = \sqrt{\frac{q \cdot 4}{\pi}} \quad \text{or} \quad \sqrt{q \cdot 1,2732}$$

Diameter for **bunched wires**

$$D = \sqrt{1.34 \cdot n} \cdot d$$

 $q = cross-section(mm^2)$

D = conductor diameter (mm)

d = single wire diameter (mm)

n = number of wires

Conductor Resistance

$$R = \frac{1}{\kappa \cdot q} \text{ oder } \frac{\rho \cdot 1}{q}$$

$$R \text{ schlaife} = \frac{2 \cdot 1}{q} \text{ oder } \frac{2 \cdot 1}{q}$$

R _{Schleife} =

= Electrical direct-current resistant (Ohm) R_{Schleife} = Resistance of a complete circuit q = cross-section (mm² or q mm)

Materials	Conductivity $\frac{m}{\Omega \cdot mm^2}$	Spec. resistance $\frac{\Omega \cdot mm^2}{m}$
Copper	58,00	0,01724
Aluminium	33,00	0,0303
Silver	62,00	0,1613
Iron	7,70	0,1299
Constantan	2,00	0,50

Serial connection

Resistance: $R = R_1 + R_2 + R_3 + ... + R_n$

Inductance.

Parallel connection

 $R = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$ Resistance:

 $C = C_1 + C_2 + C_3 + ... C_n$ Capacitance: $L = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots \frac{1}{L_n}$ Inductance:

Equivalent resistance of 2 parallel connected resistance

$$R = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Mutual capacity (C)

18 · In Da (nF/km) coaxial cable

 $C = \frac{\xi r \cdot 10^3}{36 \cdot \ln \frac{Da}{cl}} \text{ (nF/km)}$ • parallel core

• shielded twisted pair

• shielded twisted pair
$$C_B = \frac{\xi r \cdot 10^3}{36 \; ln \; \frac{2a}{d} \cdot \frac{(Da^2 - a^2)}{(Da^2 - a^2)}} \; (nF/km)$$

Da = Outer diameter over insulation

Ds = diameter over shield d = diameter of conductor

a = distance - mid to mid of both

conductors

dielectric constant

The current intensity (I) is proportional to voltage (U) and inversely proportional to resistance (R)

$$I = \frac{U}{R} R = \frac{U}{I} \qquad U = I \cdot R$$

 $\begin{array}{lll} I & = & current intensity (Amps - A) \\ R & = & electrical resistance (\Omega) \\ U & = & electrical voltage (V) \end{array}$

Conductance

$$S = \frac{1}{R}$$

$$1S = \frac{1}{1 \Omega}$$

$$G = \frac{1}{R}$$
 $1S = \frac{1}{1 \Omega}$ $1S = \frac{1}{1 M \Omega}$

S (Siemens) = reziprocal value of a resistance

is used as **conductance**

1 Siemens = 1/0hm

G = electrical conductance

Capacitance

Single core against earth

$$C_B = \frac{\xi r \cdot 10^3}{18 \ln \frac{Di}{d}} (nF/km \text{ or pF/m})$$

· Unshielded symmetrical twisted pair

$$C_B = \frac{\xi r \cdot 10^3}{36 \ln \frac{2a}{d}} \text{ (nF/km or pF/m)}$$

Coaxial pair

$$C_B = \frac{\xi r \cdot 10^3}{18 \ln \frac{Di}{d}} \text{ (nF/km or pF/m)}$$

Shielded symmetrical twistet pair
$$C_{B} = \frac{\xi r \cdot 10^{3}}{36 \ln \frac{2a}{d} \cdot \frac{(Da^{2} - a^{2})}{(Da^{2} - a^{2})}} \text{ (nF/km or pF/m)}$$

Di = outer diameter over single core (mm)
Da = outer diameter of multicores (mm)
d = conductor diamete (mm)
a = distance between two conductors mid to mid of both conductors

Inductance of parallel cores

at low frequencies

$$L = 0.4 (ln \frac{Da}{r} + 0.25) \text{ mH/km}$$

at high frequencies

$$L = 0.4 \left(\ln \frac{Da}{\Gamma} + 0 \right) \text{ mH/km}$$

Inductance of coaxial cable

at high frequencies

$$L = 0.2 \left(\ln \frac{Da}{r} + 0 \right) \text{ mH/km}$$

Da = distance between two conductors mid to mid of both conductors

r = radius of a conductor

ξr = dielectric constant

Impedance (Z)

able
$$Z = \frac{60}{\sqrt{\xi r}} \cdot \ln \frac{D}{d} (\Omega)$$

D = diameter over insulation

d = conductor diameter

for communication cable

at low frequencies
$$Z = \sqrt{\frac{R}{\omega C}} (\Omega) \cdot \tan \varphi = 1, \quad \varphi = 45^{\circ}$$

at high frequencies
$$Z = \sqrt{\frac{L}{C}} (\Omega)$$

 $R = Resistance (\Omega/km)$

L = Inductance (mH/km)

C = Capacitance (nF/km)

 $\omega = 2 \pi f$

Wave length $\lambda = \frac{V}{f}$

 $\lambda = \text{wave length}$

V = propagation velocity

(velocity of light: 300 000 km/s)

f = frequency

units of attenuation - Neper (N), decibel (dB) and Bel (B)

1 Np = 8,686 dB

 $1 \text{ dB} = 0.1151 \text{ Np} = \frac{1}{10} \text{Bel}$

1 Bel = 10 dB = 1,1513 Np